Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
نویسندگان
چکیده
OBJECTIVES This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. METHODS We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients. Surgeon 1 placed 329 SICace implants, and surgeon 2 placed 113 SICace implants and 115 Osstem implants. ISQ measurements were taken at T1 (immediately after implant placement) and T2 (before dental restoration). A multivariate linear regression model was used to analyze the influence of the following 11 candidate factors for stability prediction: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting, insertion torque, I-stage or II-stage healing pattern, implant diameter, implant length and T1-T2 time interval. RESULTS The need for bone grafting as a predictor significantly influenced ISQ values in all three groups at T1 (weight coefficients ranging from -4 to -5). In contrast, implant diameter consistently influenced the ISQ values in all three groups at T2 (weight coefficients ranging from 3.4 to 4.2). Other factors, such as sex, age, I/II-stage implantation and bone type, did not significantly influence ISQ values at T2, and implant length did not significantly influence ISQ values at T1 or T2. CONCLUSIONS These findings provide a rational basis for mathematical models to quantitatively predict the ISQ values of implants in clinical practice.
منابع مشابه
Mathematical evaluation of the influence of multiple factors on implant stability quotient values in clinical practice: a retrospective study
OBJECTIVES The objective of this study is to mathematically evaluate the influence of multiple factors on implant stability quotient values in clinical practice. PATIENTS AND METHODS Resonance frequency analysis was performed at T1 (measured immediately at the time of implant placement) and at T2 (measured before dental restoration) in 177 patients (329 implants). Using a multivariate linear ...
متن کاملDetermining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran
Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran Pahlavani, P., Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran Raei, A., PhD Candidate of GIS at School of Surveying and Geospatial Engineering, College of Engineeri...
متن کاملDetermining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran
Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran Pahlavani, P., Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran Raei, A., PhD Candidate of GIS at School of Surveying and Geospatial Engineering, College of Engineeri...
متن کاملQSRR Study of Organic Dyes by Multiple Linear Regression Method Based on Genetic Algorithm (GA–MLR
Quantitative structure-retention relationships (QSRRs) are used to correlate paper chromatographic retention factors of disperse dyes with theoretical molecular descriptors. A data set of 23 compounds with known RF values was used. The genetic algorithm-multiple linear regression analysis (GA-MLR) with three selected theoretical descriptors was obtained. The stability and predictability of the ...
متن کاملPredictive factors for loneliness in female high school students; an unvariate and multivariate logistic regression analysis
Background and aims: Loneliness typically includes anxious feelings. It is particularly relevant to adolescence period. It has effect on physical and mental health. The present study aimed to identify the predictive factors of loneliness among high schools female students. Methods: A cross– sectional survey was carried out among high schools female students in Ilam during the academic year 201...
متن کامل